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In this paper the Boolean D-poset is defined and it is showed that every subset 
of a Boolean D-poset is a compatible set. 

1. INTRODUCTION 

The basic axiomatic models of quantum mechanics are the quantum 
logics ~ (Busch et al., 1991) or orthoalgebras ~ (Randall and Foulis, 1981; 
Foulis et al., 1992). Very important in this theory is the notion of a compatible 
subset of ~ (or ~ ,  respectively), which represents simultaneously verifi- 
able events. 

There exist alternative models of quantum mechanics, for example, F- 
quantum spaces (Rie~an, 1988), F-quantum posets (Dvure~enskij and Chova- 
nec, 1988), and their generalization--the quasiorthocomplemented posets 
(Chovanec, 1993), where the compatibility of subsets has been studied. 

The compatibility of a subset of elements in these cases means that they 
belong to the same Boolean subalgebra which is contained in a corresponding 
structure, which is the case of classical mechanics. 

Recently there has appeared a new axiomatic model, D-posets, intro- 
duced in K6pka and Chovanec (1994), which generalizes quantum logics, 
orthoalgebras, as well as the set of all effects (Dvure~enskij, n.d.). In this 
model, a difference operation is a primary notion from which it is possible 
to derive other usual notions that are important for measurements. 

D-posets have been inspired by the possibility to introduce fuzzy set 
ideas into quantum structure models (K6pka, 1992). On these structures, so- 
called D-posets of fuzzy sets, compatibility has been studied (K6pka, n.d.-a). 
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The aim of the present paper is to show that every subset of a so-called 
Boolean D-poset is a compatible set. Although the definition of a compatible 
subset of a D-poset is presented in such a way that for a D-poset which at 
the same time is a quantum logic, this notion is equivalent to the notion of 
compatibility in a quantum logic, we cannot say anything similar about the 
existence of such a Boolean subalgebra as in the case of a quantum logic. 
This fact calls for a new look at the compatibility in D-posets. 

2. D-POSETS 

Let (P, --<) be a nonempty partially ordered set (poset). A partial binary 
operation \ is called a di f ference  on P, and an element b \ a  is defined in P 
if and only if a i b, and the following conditions are satisfied: 

(D1) b \ a  <- b. 
(D2) b \ ( b \ a )  = a. 

(D3) I f a - < b - < c ,  t h e n c \ b < - c \ a a n d ( c \ a ) \ ( c \ b )  = b \ a .  

Let (P, -<, \) be a poset with a difference and let 1 be the greatest 
element in P. The structure (P, ---, \, 1) is called a D-pose t .  

E x a m p l e  1. Let F be a family of all real functions from a nonempty set 
X into the unit interval [0, 1]. Let -< be a partial ordering on F such that f 
-< g if and only i f f ( t )  -< g(t) for every t E X. Let qb: [0, 1] ~ [0, 2) be an 
injective increasing continuous function such that ~(0)  = 0. A partial binary 
operation \ defined by the formula 

(gXf ) ( t )  = ~ -~ (dp(g ( t ) )  - ~ ( f ( t ) ) )  

for every f,  g ~ F, f ----- g, t E X, is the difference on F. The system (F; -<, 
\, l(t) = 1) is a D-poset. 

E x a m p l e  2. Let (L, ---, 3_, 1, 0) be an orthomodular poset (see, e.g., Ptfik 
and Pulmannov4, 1991). We put b \ a  = b ^ a • for every a, b ~ L, a ----- b. 
Then L is a D-poset. 

Let P be a D-poset. We put a • := l \ a  for any a ~ P. We say that two 
elements a and b of P are or thogonal ,  and write a & b, if a -< b • (or 
equivalently b --< a• 

The properties of a D-poset (KSpka and Chovanec, 1994) enable us to 
define a sum operation on P, that is, a partial binary operation @ on P 
(Dvure6enskij, n.d.; HedlNov(t and Pulmannovfi, n.d.) given by: a @ b is 
defined if and only if a and b are orthogonal and 
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a �9 b :=  l \ ( ( l \ a ) \ b )  = l \ ( ( l \ b ) \ a )  

The partial binary operat ion G on P is commuta t ive  and associative (Hedlf- 
kovfi and Pulmannovfi ,  n.d.; Dvure6enskij ,  n.d.). 

Let  F = { a  1 . . . . .  a n }  be a finite sequence of  P. According to Dvure~en- 
skij (n.d.), recursively we define for n -> 3 

al @ " '"  @ a n  :=  (al 0 " '"  @ a , - t )  G a n  

supposing that al �9 " "  �9 an-i  and (al �9 - "  �9 an- l )  0 an exist in P. 
Definitionally, we put al G " '"  �9 an :=  al if  n = 1, and al �9 . . .  �9 an := 
0 if n = 0. Then for  any permutat ion (ii . . . . .  in) o f  (1 . . . . .  n) and any k 
with 1 -< k <- n we have 

a l  @ " ' "  ( ~  an = a i  I ( ~  " ' "  @ a i  n, 

al �9 "'" �9 an = (al @ "'" 0 ak) 0 (ak+l @ "'" @ an) 

Let P be  a D-poset .  We say that a finite sys tem F = {al . . . . .  an} of  
P is O-or thogona l  iff al �9 " "  �9 an exists in P and write 

n 

a I O " ' "  @ a n  = ( ~ a i  
i=1 

An arbitrary sys tem G of  P is O-or thogonal  if  every finite subsys tem F of  
G is O-or thogonal .  

Def in i t ion  1. Let P be a D-poset.  We say that the finite subset F = {ab  

. . . .  an} C_ P is compat ib le  (in P) if there exists a O-or thogonal  system G 
of elements  of  P, G = { gt, t ~ T }, such that a i = @ { g,; t ~ T/}, where T/ 
is the finite subset  of  T, for every i = 1 . . . . .  n. 

An arbitrary subset E C_ P is compat ible  (in P) if  every finite subset of  
E is compat ib le  (in P). 

3. BOOLEAN D-POSETS 

In the present  section we give the sufficient condit ion for the compatibi l -  
ity of  a subset o f  a D-poset.  

Let  (P, <---) be a poset with the smallest  e lement  0. Let  O be a binary 
operation on P such the following conditions are satisfied for every a, b, c 
E P: 

(BD1) 
(BD2) 
(BD3) 
(BD4) 

a O O = a .  

I f  a - -  b, t h e n c @ b < - -  c O a .  
( c O a )  O b  = ( c E )  b ) E ) a .  
b O ( b @ a )  = a O ( a O b ) .  
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Proposition 1. (K6pka, n.d.-b). Let (P, - )  be a poset with the smallest 
element 0 and let O be a binary operation on P satisfying the conditions 
(BD1)-(BD4). Then the following assertions are true for every a, b, c, d ~ P: 

(i) b O a < - b .  
(ii) a O a  = 0 .  

(iii) Ifa---<b, t h e n a O b  = 0. 
(iv) ( c O a )  O ( c O b )  = ( b O a )  O ( b O c ) .  
(v) If a - < b - - -  c, t h e n c O b < - c O a a n d ( c O a )  O ( c O b )  = 

b o a .  
(vi) I f a - -<b ,  t h e n b O ( b O a )  = a. 

(vii) I fb<- -c ,  t h e n b O a - - - c O a .  
(viii) I f b - < c ,  t h e n ( c O a )  O ( b O a )  = ( c O b )  O ( ( a O b ) O ( a  

O c)). 
(ix) If b O a  = 0 a n d a O b = 0 ,  t h e n a  = b. 
(x) I f a ,  b - - c a n d e O a  = b O a ,  t h e n c O b = a O b .  

(xi) Let 1 be the greatest element inP,  a , b , c  E P. I f a - - < c , a - <  
b, a n d c O a  = b O a ,  thenb  = c. 

Proposition 1 proves that the binary operation O satisfies the conditions 
(D1)-(D3), i.e., it is a difference on P. 

Definition 2. Let (P, --<) be a poset with the smallest element 0 and with 
the greatest element 1. Let O be a binary operation on P satisfying the 
conditions (BD1)-(BD4). The system (P, --<, 0, 1, O) is called a Boolean 
D-poser. 

Example 3. Let the binary operation O on the family of all real functions 
F from Example 1 be defined by the following formula: 

f ~O-'(~(g(t)) - d~(f(t))) i f  f(t) <- g(t) 
(g Of) ( t )  = if f(t)  > g(t) 

Then (F, --<, O, 1, 0) be a Boolean D-poset. 

Example 4. Every MV-algebra (Chang, 1959) is a Boolean D-poset. 

We remark that every Boolean D-poset P is a D-poser and the binary 
operation O on P generates the binary operation 4- on P defined via a 4- b 
"= (a • 0 b) • where a z = 1 0 a for every a ~ P. The operation 4- on P 
has the following properties: 

Proposition 2 (K6pka, n.d.-b). Let (P, -<, 0, 1, O) be a Boolean D-poset. 
Then the following assertions are true for every a, b, c, E P: 

(1) a 4 - b > - - a , b .  
(2) a 4- b = b 4- a (commutativity). 
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(3) (a 4- b) 4- c = a 4- (b 4- c) (associativity).  
(4) a 4- O = a. 
(5) I f a  ~ b ,  t h e n a O c - - - - - b G c .  
(6) a 4- ( b O a )  = b 4- ( a O b ) .  
(7) ( b G a )  4- ( b O ( b O a ) )  = b. 
(8) I f a - - < b ,  t h e n a  4- ( b G a )  = b. 
(9) I f  a -< c, b --- c G a ,  t h e n a  4- b = c O ( ( c O a )  Q b ) .  

Remark 1. Let P be  a Boolean D-poset ,  let G be a system of  e lements  
of  P, G = { gt, t ~ T}. Then the system G is 4--orthogonal (in the sense of  
D-posets)  if the sums 4-{g~, t ~ T~}, 4 - { g t ,  t ~ Z2} are orthogonal,  i.e., 
Jr { gt, t E Tl } --< 1 G (4- { gt, t E T2 }), for finite subsets TI and / '2  of  T, such 
that T~ N T2 = 0. 

Theorem 1. Let (P, --<, 0, 1, G)  be a Boolean  D-poset.  Then an arbitrary 
subset E of  P is a compat ible  set (in P). 

Proof  It suffices to prove that for every finite subset E of  P, E = {a~, 
. . . .  an}, there exists a 4--orthogonal sys tem G of  elements  of  P, G = { gt; 
t ~ T}, such that ai = 4-{gt; t ~ T~}, where T~ is a finite subset o f  T, i = 
1 . . . . .  n. The existence of  the system G will be proved by mathemat ical  
induction according to the number  of  the elements  of  the set E. 

1. Let  n = 2, i.e., E = {a, b}. Then the system 

G = { a O b ,  b O a ,  a G ( a Q b ) = b G ( b O a ) }  

is 4--orthogonal and a = (a O (a G b)) 4- (a O b), b = (b G (b G a)) 4- 
(b O a). 

2. We assume that the previous assertion holds for every subset E of  P 
containing n - 1 elements,  i.e., if E = {a~ . . . . .  an- l}  then there exists a 
4--orthogonal system G of  elements  of  P, G = {gt, t ~ T}, such that a i = 

4- { g~, t ~ T/}, where  T, is a finite subset o f  T, i = 1 . . . . .  n - 1. 
Without loss of  generali ty we assume that 

n-1 

G =  { g t ' t  E i=[U T/} = {gl . . . . .  gk} 

Let  now E = {al . . . . .  an-l, a}. We put 

b 0 = a  

b i = b i - l O g i  for every i =  1 . . . . .  k 

It is evident that b~_l -> bi for every i = 1 . . . . .  k. 
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Now we construct the system of  elements o f  P in the following way: 

c i = b i - l O b i  for every i =  1 . . . . .  k 

Ck+ 1 "=" bk 

By the properties of  the binary operation O we have 

cl = b o G b l  = a O ( a O g l )  = g l G ( g l O a ) - - < g l  

c2 = b l G b 2  = ( a O g t )  O ( ( a O g l ) G g 2 )  

= g z O ( g z ~ ( a ~ g l ) )  ~ g2 
l 

ck = bk-I O b~ = ((a O gl) G " '"  G gk-1) 

G (((a O gl) G " "  O gk-1) O gk) 

= gk 0 (gk 0 ((a G gl) G "'" G gk-~)) <- g~ 

Ck+l = b k =  ( a O g t )  O ' " G g k  

Then the system { gl Q cj . . . . .  gk G Ck, Ca . . . . .  Ck, q+l} is 4--orthogonal, 
gi = (gi G ci) 4- ci, for every i = 1 . . . . .  k, and 

ca 4 - . . .  4- c~+1 

= ( q  4- "'" 4- ck-l)  4- (ck 4- q+O 

= (cl 4- "'" 4- c~-l) 4- bk-1 = (cl 4- "'" 4- c~-z) 4- (Ck-l 4- bk-O 

: ( C I  4 -  " ' "  4 -  Ck-2) 4- ((bk-2 G bk-1) 4- bk-1) 

= (C 1 4- . . .  4- Ok-2) 4- bk- 2 

. . . .  (a 0 bl) 4- bl = a �9 
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