Compatibility in D-Posets

František Kôpka¹

Received March 28, 1995

In this paper the Boolean D-poset is defined and it is showed that every subset of a Boolean D-poset is a compatible set.

1. INTRODUCTION

The basic axiomatic models of quantum mechanics are the quantum logics \mathcal{L} (Busch *et al.*, 1991) or orthoalgebras \mathcal{A} (Randall and Foulis, 1981; Foulis *et al.,* 1992). Very important in this theory is the notion of a compatible subset of $\mathcal L$ (or $\mathcal A$, respectively), which represents simultaneously verifiable events.

There exist alternative models of quantum mechanics, for example, Fquantum spaces (Riečan, 1988), F-quantum posets (Dvurečenskij and Chovanec, 1988), and their generalization—the quasiorthocomplemented posets (Chovanec, 1993), where the compatibility of subsets has been studied.

The compatibility of a subset of elements in these cases means that they belong to the same Boolean subalgebra which is contained in a corresponding structure, which is the case of classical mechanics.

Recently there has appeared a new axiomatic model, D-posets, introduced in K6pka and Chovanec (1994), which generalizes quantum logics, orthoalgebras, as well as the set of all effects (Dvurečenskij, n.d.). In this model, a difference operation is a primary notion from which it is possible to derive other usual notions that are important for measurements.

D-posets have been inspired by the possibility to introduce fuzzy set ideas into quantum structure models (Kôpka, 1992). On these structures, socalled D-posets of fuzzy sets, compatibility has been studied (Kôpka, n.d.-a).

1525

¹ Department of Mathematics, Military Academy, 03119 Liptovský Mikuláš, Slovakia.

The aim of the present paper is to show that every subset of a so-called Boolean D-poset is a compatible set. Although the definition of a compatible subset of a D-poset is presented in such a way that for a D-poset which at the same time is a quantum logic, this notion is equivalent to the notion of compatibility in a quantum logic, we cannot say anything similar about the existence of such a Boolean subalgebra as in the case of a quantum logic. This fact calls for a new look at the compatibility in D-posets.

2. D-POSETS

Let (P, \leq) be a nonempty partially ordered set (poset). A partial binary operation \setminus is called a *difference* on P, and an element $b \setminus a$ is defined in P if and only if $a \leq b$, and the following conditions are satisfied:

- (D1) $b\lambda a \leq b$.
- (D2) $b\lambda(b\lambda a) = a$.
- (D3) If $a \le b \le c$, then $c\backslash b \le c\backslash a$ and $(c\backslash a)\backslash (c\backslash b) = b\backslash a$.

Let (P, \leq, \setminus) be a poset with a difference and let 1 be the greatest element in *P*. The structure $(P, \leq, \setminus, 1)$ is called a *D-poset*.

Example 1. Let F be a family of all real functions from a nonempty set X into the unit interval [0, 1]. Let \leq be a partial ordering on F such that f $\leq g$ if and only if $f(t) \leq g(t)$ for every $t \in X$. Let Φ : [0, 1] \rightarrow [0, ∞) be an injective increasing continuous function such that $\Phi(0) = 0$. A partial binary operation \ defined by the formula

$$
(g \backslash f)(t) = \Phi^{-1}(\Phi(g(t)) - \Phi(f(t)))
$$

for every $f, g \in F, f \leq g, t \in X$, is the difference on F. The system $(F; \leq,$ λ , $1(t) = 1$) is a D-poset.

Example 2. Let $(L, \leq, \perp, 1, 0)$ be an orthomodular poset (see, e.g., Pták and Pulmannová, 1991). We put $b \setminus a = b \land a^{\perp}$ for every $a, b \in L$, $a \leq b$. Then L is a D-poset.

Let P be a D-poset. We put $a^{\perp} := 1 \setminus a$ for any $a \in P$. We say that two elements a and b of P are *orthogonal*, and write $a \perp b$, if $a \leq b^{\perp}$ (or equivalently $b \leq a^{\perp}$).

The properties of a D-poset (Kôpka and Chovanec, 1994) enable us to define a sum operation on P, that is, a partial binary operation \oplus on P (Dvurečenskij, n.d.; Hedlíková and Pulmannová, n.d.) given by: $a \oplus b$ is defined if and only if a and b are orthogonal and

Compatibility in D-Posets 1527

$$
a \oplus b := 1 \setminus ((1 \setminus a) \setminus b) = 1 \setminus ((1 \setminus b) \setminus a)
$$

The partial binary operation \oplus on P is commutative and associative (Hedlfková and Pulmannová, n.d.; Dvurečenskij, n.d.).

Let $F = \{a_1, \ldots, a_n\}$ be a finite sequence of P. According to Dvurecenskij (n.d.), recursively we define for $n \geq 3$

$$
a_1 \oplus \cdots \oplus a_n := (a_1 \oplus \cdots \oplus a_{n-1}) \oplus a_n
$$

supposing that $a_1 \oplus \cdots \oplus a_{n-1}$ and $(a_1 \oplus \cdots \oplus a_{n-1}) \oplus a_n$ exist in P. Definitionally, we put $a_1 \oplus \cdots \oplus a_n := a_1$ if $n = 1$, and $a_1 \oplus \cdots \oplus a_n :=$ 0 if $n = 0$. Then for any permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$ and any k with $1 \leq k \leq n$ we have

$$
a_1 \oplus \cdots \oplus a_n = a_{i_1} \oplus \cdots \oplus a_{i_n},
$$

$$
a_1 \oplus \cdots \oplus a_n = (a_1 \oplus \cdots \oplus a_k) \oplus (a_{k+1} \oplus \cdots \oplus a_n)
$$

Let P be a D-poset. We say that a finite system $F = \{a_1, \ldots, a_n\}$ of P is \oplus -orthogonal iff $a_1 \oplus \cdots \oplus a_n$ exists in P and write

$$
a_1 \oplus \cdots \oplus a_n = \bigoplus_{i=1}^n a_i
$$

An arbitrary system G of P is \bigoplus -orthogonal if every finite subsystem F of G is \oplus -orthogonal.

Definition 1. Let P be a D-poset. We say that the finite subset $F = \{a_1, a_2, \ldots, a_n\}$ \ldots , a_n } \subseteq P is compatible (in P) if there exists a \oplus -orthogonal system G of elements of P, $G = \{g_t, t \in T\}$, such that $a_i = \bigoplus \{g_t, t \in T_i\}$, where T_i is the finite subset of T, for every $i = 1, \ldots, n$.

An arbitrary subset $E \subset P$ is compatible (in P) if every finite subset of E is compatible (in P).

3. BOOLEAN D-POSETS

In the present section we give the sufficient condition for the compatibility of a subset of a D-poset.

Let (P, \leq) be a poset with the smallest element 0. Let \ominus be a binary operation on P such the following conditions are satisfied for every a, b, c $\in P$:

 $(BD1)$ $a \ominus 0 =$

- (BD2) If $a \leq b$, then $c \ominus b \leq c \ominus a$
- (BD3) $(c \ominus a) \ominus b = (c \ominus b) \ominus a$
- (BD4) $b \ominus (b \ominus a) = a \ominus (a \ominus a)$

1528 K6pka

Proposition 1. (Kôpka, n.d.-b). Let (P, \leq) be a poset with the smallest element 0 and let \ominus be a binary operation on P satisfying the conditions (BD1)–(BD4). Then the following assertions are true for every a, b, c, $d \in P$:

- (i) $b \ominus a \leq b$.
- (ii) $a \ominus a = 0$.
- (iii) If $a \leq b$, then $a \ominus b = 0$.
- (iv) $(c \ominus a) \ominus (c \ominus b) = (b \ominus a) \ominus (b \ominus c).$
- (v) If $a \leq b \leq c$, then $c \ominus b \leq c \ominus a$ and $(c \ominus a) \ominus (c \ominus b)$ = $b \ominus a$.
- (vi) If $a \leq b$, then $b \ominus (b \ominus a) = a$.
- (vii) If $b \leq c$, then $b \ominus a \leq c \ominus a$.
- (viii) If $b \leq c$, then $(c \ominus a) \ominus (b \ominus a) = (c \ominus b) \ominus ((a \ominus b) \ominus (a$ \ominus c)).
	- (ix) If $b \ominus a = 0$ and $a \ominus b = 0$, then $a = b$.
	- (x) If a, $b \leq c$ and $c \ominus a = b \ominus a$, then $c \ominus b = a \ominus b$.
	- (xi) Let 1 be the greatest element in P, a, b, $c \in P$. If $a \leq c$, $a \leq$ b, and $c \ominus a = b \ominus a$, then $b = c$.

Proposition 1 proves that the binary operation Θ satisfies the conditions (D1)-(D3), i.e., it is a difference on P.

Definition 2. Let (P, \leq) be a poset with the smallest element 0 and with the greatest element 1. Let \ominus be a binary operation on P satisfying the conditions (BD1)-(BD4). The system $(P, \leq, 0, 1, \Theta)$ is called a *Boolean D-poser.*

Example 3. Let the binary operation \ominus on the family of all real functions F from Example 1 be defined by the following formula:

$$
(g \ominus f)(t) = \begin{cases} \Phi^{-1}(\Phi(g(t)) - \Phi(f(t))) & \text{if } f(t) \le g(t) \\ 0 & \text{if } f(t) > g(t) \end{cases}
$$

Then $(F, \leq, \ominus, 1, 0)$ be a Boolean D-poset.

Example 4. Every MV-algebra (Chang, 1959) is a Boolean D-poset.

We remark that every Boolean D-poset P is a D-poset and the binary operation \ominus on P generates the binary operation \div on P defined via $a \div b$ $:= (a^{\perp} \ominus b)^{\perp}$, where $a^{\perp} = 1 \ominus a$ for every $a \in P$. The operation \vdash on P has the following properties:

Proposition 2 (Kôpka, n.d.-b). Let $(P, \leq, 0, 1, \Theta)$ be a Boolean D-poset. Then the following assertions are true for every a, b, c, \in P:

- (1) $a + b \ge a, b$.
- (2) $a + b = b + a$ (commutativity).

(3) $(a + b) + c = a + (b + c)$ (associativity). (4) $a + 0 = a$. (5) If $a \leq b$, then $a \oplus c \leq b \oplus c$. (6) $a \dotplus (b \ominus a) = b \dotplus (a \ominus b)$. (7) $(b \ominus a) + (b \ominus (b \ominus a)) = b$. (8) If $a \leq b$, then $a + (b \ominus a) = b$. (9) If $a \leq c, b \leq c \ominus a$, then $a + b = c \ominus ((c \ominus a) \ominus b)$.

Remark 1. Let P be a Boolean D-poset, let G be a system of elements of P, $G = \{g_t, t \in T\}$. Then the system G is $\dot{+}$ -orthogonal (in the sense of D-posets) if the sums $\dot{+} \{g_t, t \in T_1\}$, $\dot{+} \{g_t, t \in T_2\}$ are orthogonal, i.e., $f\{g_t, t \in T_1\} \leq 1 \bigoplus (f\{g_t, t \in T_2\})$, for finite subsets T_1 and T_2 of T, such that $T_1 \cap T_2 = \emptyset$.

Theorem 1. Let $(P, \leq, 0, 1, \ominus)$ be a Boolean D-poset. Then an arbitrary subset E of P is a compatible set (in P).

Proof. It suffices to prove that for every finite subset E of P, $E = \{a_1, a_2\}$ \ldots , a_n , there exists a +-orthogonal system G of elements of P, $G = \{g_i\}$. $t \in T$, such that $a_i = \frac{1}{2} \{g_i; t \in T_i\}$, where T_i is a finite subset of T, $i =$ $1, \ldots, n$. The existence of the system G will be proved by mathematical induction according to the number of the elements of the set E .

1. Let $n = 2$, i.e., $E = \{a, b\}$. Then the system

$$
G = \{a \ominus b, b \ominus a, a \ominus (a \ominus b) = b \ominus (b \ominus a)\}\
$$

is $\ddot{+}$ -orthogonal and $a = (a \ominus (a \ominus b)) + (a \ominus b), b = (b \ominus (b \ominus a)) + (b \ominus (b \ominus b))$ $(b \ominus a)$.

2. We assume that the previous assertion holds for every subset E of P containing $n - 1$ elements, i.e., if $E = \{a_1, \ldots, a_{n-1}\}\$ then there exists a $\ddot{+}$ -orthogonal system G of elements of P, $G = \{g_t, t \in T\}$, such that $a_i =$ $\dot{x} + \{g_i, t \in T_i\}$, where T_i is a finite subset of T_i , $i = 1, \ldots, n - 1$.

Without loss of generality we assume that

$$
G = \left\{ g_t, t \in \bigcup_{i=1}^{n-1} T_i \right\} = \left\{ g_1, \ldots, g_k \right\}
$$

Let now $E = \{a_1, \ldots, a_{n-1}, a\}$. We put

$$
b_0 = a
$$

\n
$$
b_i = b_{i-1} \ominus g_i
$$
 for every $i = 1, ..., k$

It is evident that $b_{i-1} \geq b_i$ for every $i = 1, \ldots, k$.

Now we construct the system of elements of P in the following way:

$$
c_i = b_{i-1} \ominus b_i \quad \text{for every} \quad i = 1, ..., k
$$

$$
c_{k+1} = b_k
$$

By the properties of the binary operation \ominus we have

$$
c_1 = b_0 \ominus b_1 = a \ominus (a \ominus g_1) = g_1 \ominus (g_1 \ominus a) \le g_1
$$

\n
$$
c_2 = b_1 \ominus b_2 = (a \ominus g_1) \ominus ((a \ominus g_1) \ominus g_2)
$$

\n
$$
= g_2 \ominus (g_2 \ominus (a \ominus g_1)) \le g_2
$$

\n:
\n:
\n:
\n
$$
c_k = b_{k-1} \ominus b_k = ((a \ominus g_1) \ominus \cdots \ominus g_{k-1})
$$

\n
$$
\ominus (((a \ominus g_1) \ominus \cdots \ominus g_{k-1}) \ominus g_k)
$$

\n
$$
= g_k \ominus (g_k \ominus ((a \ominus g_1) \ominus \cdots \ominus g_{k-1})) \le g_k
$$

\n
$$
c_{k+1} = b_k = (a \ominus g_1) \ominus \cdots \ominus g_k
$$

Then the system $\{g_1 \oplus c_1, \ldots, g_k \oplus c_k, c_1, \ldots, c_k, c_{k+1}\}\)$ is +-orthogonal, $g_i = (g_i \ominus c_i) + c_i$, for every $i = 1, \ldots, k$, and

$$
c_1 \dot{+} \cdots \dot{+} c_{k+1}
$$

= $(c_1 + \cdots + c_{k-1}) + (c_k + c_{k+1})$
= $(c_1 + \cdots + c_{k-1}) + b_{k-1} = (c_1 + \cdots + c_{k-2}) + (c_{k-1} + b_{k-1})$
= $(c_1 + \cdots + c_{k-2}) + ((b_{k-2} \ominus b_{k-1}) + b_{k-1})$
= $(c_1 + \cdots + c_{k-2}) + b_{k-2}$
 $\cdots = (a \ominus b_1) + b_1 = a$

ACKNOWLEDGMENT

This research is supported by grant G-229/94 of the Slovak Academy of Sciences, Slovakia.

REFERENCES

Bush, E, Lahti, E J., and Mittelstaedt, P. (1991). *The Quantum Theory of Measurement,* Springer-Verlag, Berlin.

Compatibility in D-Posets 1531

- Chang, C. C. (1959). Algebraic analysis of many valued logics, *Transactions of the American Mathematical Society.* 88, 467-490.
- Chovanec, E (1993). Compatibility problem in quasi-orthocomplemented posets, *Mathematica Slovaca,* 43(1), 89-103.
- Dvurečenskij, A. (n.d.). Tensor product of difference posets, to appear.
- Dvurečenskij, A., and Chovanec, F. (1988). Fuzzy quantum spaces and compatibility, *International Journal of Theoretical Physics,* 27, 1069-1082.
- Foulis, D. J., Greechie, R. J., and Rtittimann, G. T. (1992). Filters and supports in orthoalgebras, *International Journal of Theoretical Physics,* 31,787-807.
- Hedlíková, J., and Pulmannová, S. (n.d.). Generalized difference posets and orthoalgebras, submitted.
- K6pka, E (1992). D-posets of fuzzy sets, *Tatra Mountains Mathematical Publications,* 1, 83-89.
- K6pka, F. (n.d.-a). Compatibility in D-posets of fuzzy sets, *Tatra Mountains Mathematical Publications,* to appear.
- K6pka, E (n.d.-b). Compatible sets in D-posets, submitted.
- K6pka, E, and Chovanec, E (1994). D-posets, *Mathematica Slovaca,* 44(1), 21-34.
- Neubrunn, T., and Pulmannová, S. (1983). On compatibility in quantum logics, *Acta Mathematica Universitas Comenianae,* XLII-XLIII, 153-168.
- Pták, P., and Pulmannová, S. (1991). Orthomodular structures as quantum logics, VEDA, Bratislava, and Kluwer, Dordrecht.
- Randall, C., and Foulis, D. (1981). Empirical logic and tensor products, in *Interpretations and Foundations of Quantum Theory,* Vol. 5, H. Neumann, ed., Wissenschaftsverlag, Bibligraphisches Institut, Manheim, pp. 9-20.
- Riečan, B. (1988). A new approach to some notions of statistical quantum mechanics, *BUSEFAL* 35, 4-6.